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X-ray microscopy is a technique whereby 3D volumes can be

reconstructed from a set of projections using back-projection. 

The greyscale value of a voxel (3D pixel) within these volumes 

is proportional to the relative X-ray attenuation within that 

voxel, which is in turn related to the constituent material density, 

atomic weight and the incident X-ray energy. Frequently, subtle 

variations in either mineral composition (such as through solid 

solution, or when mineral compositions are strongly related) 

lead to reconstructed greyscale values that are sufficiently close 

to each-other that they are indistinguishable to traditional 

segmentation techniques [1]. To add complexity, the absolute 

greyscale value of the reconstructed image can be affected by 

a range of properties associated with factors such as imaging 

geometry, X-ray filtering or the presence of material outside the 

field of view (so-called region of interest scanning, or interior 

tomography), even if relative values remain the same. Such 

challenges have limited the application of X-ray microscopy to 

petrological or mineralogical applications, with most published 

work requiring intricate image processing and segmentation 

workflows [2]. While the minerals are challenging to discriminate 

by computational techniques, they are often easily discriminable 

by eye, which acts to smooth out noise, remove artifacts and 

perform classification on a much greater range of parameters 

than just a single pixel or voxel greyscale value (Figure 1).  

Manual inspection will show local and non-local greyscale  

values, gradients, textures and associations, which are integrated 

by the brain to form an ultimate local or region classification.

Rock and mineral assemblages are three dimensional (3D) structures, but traditional microanalytical 

techniques used to examine and address them, such as scanning electron microscope (SEM) based 

automated quantitative mineralogy (AQM), or traditional optical petrography, are inherently 2D.  

The prevalence of these techniques is understandable as they give a great level of analytical precision 

and reliability, but their 2D nature limits the insights that are available to the researcher, as well as 

their ability to make quantitative assessments.

The last 20 years have seen a transformation in a wide range of 

fields, widely grouped together under the umbrella of “machine 

learning.” Recent studies have shown that, when applied to the 

challenge of voxel classification, machine learning techniques 

are more robust, less noise- and artifact-prone, and, critically, 

provide a set of computational techniques that are able to perform  

classifications using this higher dimensional space [3-4]. This is 

done by first computing a range of features from an image using 

a set of filters, creating a “pixel feature-vector.” This is then fed 

into a machine learning algorithm (such as the “forest of random 

trees” algorithm [5], which ultimately creates a pixel classification. 

While such techniques significantly simplify the challenge 

of 3D mineralogical analysis, significant challenges remain, 

specifically training the models required for accurate classification 

and the mineralogical assignment of the computationally classified 

phases. To solve this challenge, automated quantitative mineralogy 

(AQM) techniques, such as ZEISS Mineralogic, can be used, and 

then correlated to the 3D data. ZEISS Mineralogic uses energy 

dispersive X-ray spectroscopy (EDS) scanning, integrated within 

a SEM to first produce quantitative chemical maps across 

extended regions of a sample surface. These chemical maps 

are then compared to an extensive mineralogical database to 

assign unique mineralogical classifications with a resolution 

down to 200 nm [6]. 
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Figure 1  A) Cross section through 3D X-ray microscope (XRM) image of a  

multi-mineralogical sandstone composed of quartz, feldspars, clays and pyrite. 

While these mineralogical differences can be seen relatively easily by eye,  

a profile through these minerals (B) shows no simple threshold that can be 

applied to separate each mineral phase.

Figure 2  Voxel segmentation using machine learning as present in ZEN Intellesis. 

Data is processed through a bank of filters, creating a complex pixel-by-pixel 

feature vector. Labeled pixels are used to construct a decision tree algorithm, 

which is then applied to the entire volume to create the final segmentation.

Training Information Machine Learning

Decision Tree Construction

Final Segmentation

Feature 1

(e.g. non-local greyscale)

Feature 2

(e.g. gradient)

Feature 3

(e.g. texture)

Feature n

(n is frequently > 100)

Original Image

Correlated Data



3

The propagation of this classification to 3D can occur through 

two workflows. The simplest technique assigns mineralogy  

and chemical compositions to phases identified and classified 

through manual training of classes identified from the 3D data.  

A single composition and classification is then assigned to each 

phase, which is then propagated throughout the 3D volume. 

Another more sophisticated workflow is to import the classifica-

tions found from ZEISS Mineralogic and use them to train the 

classification found in 3D. This provides a more complete training 

set, but only for the intersecting region between the 2D AQM 

mineral map and the 3D X-ray volume. These two techniques 

can be combined with extensive training data provided by 

AQM supplemented by additional manual training data 

provided from within the 3D volume. 

 

The AQM mineral map is usually performed on an outside surface 

of a sample, such as the polished top surface of a drill core, 

allowing for the easy registration of the 2D data with the 3D 

tomography. A more complex workflow is possible where a thin 

section is prepared from a central portion of the sample after 

3D tomography data has been acquired. This approach has the 

disadvantage of both being destructive and making the 2D-3D 

registration more challenging, however it may reduce certain 

X-ray imaging artifacts and may be required if AQM data is 

required on deeply buried 3D features.

Figure 3  A) AQM mineral map of the top surface of a drill core. (B) Correlation of the 2D AQM mineral map with the 3D tomography.  

(C) 3D classification of mineralogy using ZEN Intellesis.

Figure 4  (A) Correlated AQM mineral map and 3D X-ray tomography. 

(B) X-ray mineral classification.
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ZEISS provides a complete set of integrated software packages 

that enable and simplify such sophisticated analytical workflows. 

ZEISS Mineralogic provides AQM mapping of SEM data allowing 

for quantitative major element compositions to be determined 

and mineral classifications to be assigned. 3D data integration 

and correlation can be performed using ZEN Connect and ORS 

Dragonfly (for 3D visualization). Machine-learning based image 

segmentation of complex 2D and 3D data can be performed 

using ZEN Intellesis.

Conclusions and Future Work

One of the exciting future areas of development for 3D mineral 

classification is its integration with techniques such as diffraction 

contrast tomography using ZEISS LabDCT. This allows for crystal 

orientations to be explicitly resolved through Laue condition 

X-ray diffraction. One of the challenges when applying these 

techniques to geological systems is their relative crystallographic 

imperfection and complexity. An aspect of this complexity is 

when multi-modal systems are present. In this case, performing  

a 3D mineralogy workflow prior to LabDCT reconstruction allows 

for specific domains within the 3D volume where crystallographic 

reconstructions can be performed with a known crystal symmetry 

for the associated mineral. This in turn allows for both mineralogy 

and details of crystallography to be extracted from a sample.

Figure 5  (A) Absorption tomography volume of a barred olivine chondrule from the Bjurböle meteorite. Olivine is shown with a red overlay. 

(B) LabDCT reconstruction of olivine crystal orientation from within the chondrule. 

Image reproduced with permission from Dr. Romy Hanna, UT Austin, USA.

References

[1]  Lai, M., “Deep Learning for Image Segmentation,” http://arxiv.org/abs/1505.02000

[2]  Tin Kam Ho, “Random decision forests,” Proceedings of 3rd International Conference on Document Analysis and Recognition,

 Montreal, Quebec, Canada, 1995, pp. 278-282 vol.1.

[3]  Andrew, M., “A quantified study of segmentation techniques on synthetic geological XRM and FIB-SEM images,” 

 Computational Geosciences, Vol 22, pg 1503 (2018), https://doi.org/10.1007/s10596-018-9768-y

[4]  Gaetano, G., et al, “The Sensitivity of Estimates of Multiphase Fluid and Solid Properties of Porous Rocks to Image Processing,” 

 Transport in Porous Media, Vol. 131, 985-1005(2020), https://doi.org/10.1007/s11242-019-01374-z 

[5]  Breiman, L. Random Forests. Machine Learning 45, 5-32 (2001). https://doi.org/10.1023/A:1010933404324

[6]  Graham, S.; Keulen, N. Nanoscale Automated Quantitative Mineralogy: A 200-nm Quantitative Mineralogy Assessment of Fault Gouge  

 Using Mineralogic. Minerals 2019, 9, 665. https://doi.org/10.3390/min9110665



Carl Zeiss Microscopy GmbH 

07745 Jena, Germany  

microscopy@zeiss.com  
www.zeiss.com/geosciences

EN
_

4
2

_
0

1
3

-3
1
3

 |
 C

Z 
0

4
-2

0
2

0
 |
 D

e
si

g
n

, 
sc

o
p

e 
o

f 
d

e
liv

e
ry

 a
n

d
 t

e
ch

n
ic

a
l 
p

ro
g

re
ss

 s
u

b
je

ct
 t

o
 c

h
a
n

g
e 

w
it

h
o

u
t 

n
o

ti
ce

. 
| 
©

 C
a
rl

 Z
e
is

s 
M

ic
ro

sc
o

p
y 

G
m

b
H

N
o

t 
fo

r 
th

e
ra

p
e
u

ti
c 

u
se

, 
tr

e
a
tm

e
n

t 
o

r 
m

e
d

ic
a
l 
d

ia
g

n
o

st
ic

 e
vi

d
e
n

ce
. 

N
o

t 
a
ll 

p
ro

d
u

ct
s 

a
re

 a
va

ila
b

le
 i
n

 e
ve

ry
 c

o
u

n
tr

y.
 C

o
n

ta
ct

 y
o

u
r 

lo
ca

l 
Z
EI

SS
 r

e
p

re
se

n
ta

ti
ve

 f
o

r 
m

o
re

 i
n

fo
rm

a
ti

o
n

.

mailto:micro%40zeiss.com?subject=White%20Paper
http://facebook.com/zeissmicroscopy
http://flickr.com/zeissmicro
http://twitter.com/zeiss_micro
http://youtube.com/zeissmicroscopy

